This article is translated by AI.
If a 1 ≡ b 1 ( m o d m ) , a 2 ≡ b 2 ( m o d m ) a_1 \equiv b_1(\bmod m), a_2 \equiv b_2(\bmod m) a 1 ≡ b 1 ( mod m ) , a 2 ≡ b 2 ( mod m ) , then
a 1 a 2 ≡ b 1 b 2 ( m o d m ) a_1 a_2 \equiv b_1 b_2(\bmod m) a 1 a 2 ≡ b 1 b 2 ( mod m )
Proof: From the hypothesis a 1 ≡ b 1 ( m o d m ) a_1 \equiv b_1 \pmod m a 1 ≡ b 1 ( mod m ) and a 2 ≡ b 2 ( m o d m ) a_2 \equiv b_2 \pmod m a 2 ≡ b 2 ( mod m ) , according to the definition of congruence, we know that m ∣ ( a 1 − b 1 ) m \mid (a_1 - b_1) m ∣ ( a 1 − b 1 ) and m ∣ ( a 2 − b 2 ) m \mid (a_2 - b_2) m ∣ ( a 2 − b 2 ) . Therefore, there exist integers k 1 , k 2 k_1, k_2 k 1 , k 2 such that
a 1 − b 1 = m k 1 a_1 - b_1 = mk_1 a 1 − b 1 = m k 1
a 2 − b 2 = m k 2 a_2 - b_2 = mk_2 a 2 − b 2 = m k 2
That is a 1 = b 1 + m k 1 a_1 = b_1 + mk_1 a 1 = b 1 + m k 1 and a 2 = b 2 + m k 2 a_2 = b_2 + mk_2 a 2 = b 2 + m k 2 .
Consider a 1 a 2 − b 1 b 2 a_1 a_2 - b_1 b_2 a 1 a 2 − b 1 b 2 :
a 1 a 2 − b 1 b 2 = ( b 1 + m k 1 ) ( b 2 + m k 2 ) − b 1 b 2 = b 1 b 2 + b 1 m k 2 + b 2 m k 1 + m 2 k 1 k 2 − b 1 b 2 = m ( b 1 k 2 + b 2 k 1 + m k 1 k 2 ) \begin{align} a_1 a_2 - b_1 b_2 &= (b_1 + mk_1)(b_2 + mk_2) - b_1 b_2 \\ &= b_1 b_2 + b_1 mk_2 + b_2 mk_1 + m^2 k_1 k_2 - b_1 b_2 \\ &= m(b_1 k_2 + b_2 k_1 + mk_1 k_2) \end{align} a 1 a 2 − b 1 b 2 = ( b 1 + m k 1 ) ( b 2 + m k 2 ) − b 1 b 2 = b 1 b 2 + b 1 m k 2 + b 2 m k 1 + m 2 k 1 k 2 − b 1 b 2 = m ( b 1 k 2 + b 2 k 1 + m k 1 k 2 )
Since b 1 , k 2 , b 2 , k 1 , m b_1, k_2, b_2, k_1, m b 1 , k 2 , b 2 , k 1 , m are all integers, b 1 k 2 + b 2 k 1 + m k 1 k 2 b_1 k_2 + b_2 k_1 + mk_1 k_2 b 1 k 2 + b 2 k 1 + m k 1 k 2 is also an integer. Therefore, m ∣ ( a 1 a 2 − b 1 b 2 ) m \mid (a_1 a_2 - b_1 b_2) m ∣ ( a 1 a 2 − b 1 b 2 ) . According to the definition of congruence, we have
a 1 a 2 ≡ b 1 b 2 ( m o d m ) a_1 a_2 \equiv b_1 b_2 \pmod m a 1 a 2 ≡ b 1 b 2 ( mod m )
Q.E.D.
If C ≡ d ( m o d m ) , ( C , m ) = 1 C \equiv d(\bmod m),(C, m)=1 C ≡ d ( mod m ) , ( C , m ) = 1 , then
a C ≡ b d ( m o d m ) aC \equiv bd(\bmod m) a C ≡ b d ( mod m )
is equivalent to
a ≡ b ( m o d m ) a \equiv b(\bmod m) a ≡ b ( mod m )
Proof: (⟹ \Longrightarrow ⟹ ) Assume a ≡ b ( m o d m ) a \equiv b \pmod m a ≡ b ( mod m ) . From the hypothesis C ≡ d ( m o d m ) C \equiv d \pmod m C ≡ d ( mod m ) . According to the conclusion of the previous question (multiplicative property of congruence), multiplying a ≡ b ( m o d m ) a \equiv b \pmod m a ≡ b ( mod m ) and C ≡ d ( m o d m ) C \equiv d \pmod m C ≡ d ( mod m ) , we get:
a C ≡ b d ( m o d m ) aC \equiv bd \pmod m a C ≡ b d ( mod m )
(⟸ \Longleftarrow ⟸ ) Assume a C ≡ b d ( m o d m ) aC \equiv bd \pmod m a C ≡ b d ( mod m ) . From the hypothesis C ≡ d ( m o d m ) C \equiv d \pmod m C ≡ d ( mod m ) , we know m ∣ ( C − d ) m \mid (C-d) m ∣ ( C − d ) , that is d = C − m k d = C - mk d = C − mk holds for some integer k k k . Substitute d = C − m k d = C - mk d = C − mk into a C ≡ b d ( m o d m ) aC \equiv bd \pmod m a C ≡ b d ( mod m ) :
a C ≡ b ( C − m k ) ( m o d m ) aC \equiv b(C - mk) \pmod m a C ≡ b ( C − mk ) ( mod m )
a C ≡ b C − b m k ( m o d m ) aC \equiv bC - bmk \pmod m a C ≡ b C − bmk ( mod m )
Since b m k ≡ 0 ( m o d m ) bmk \equiv 0 \pmod m bmk ≡ 0 ( mod m ) , the above equation simplifies to:
a C ≡ b C ( m o d m ) aC \equiv bC \pmod m a C ≡ b C ( mod m )
This means m ∣ ( a C − b C ) m \mid (aC - bC) m ∣ ( a C − b C ) , that is m ∣ ( a − b ) C m \mid (a - b)C m ∣ ( a − b ) C .
Because gcd ( C , m ) = 1 \gcd(C, m) = 1 g cd( C , m ) = 1 , according to Euclid's Lemma, we can get m ∣ ( a − b ) m \mid (a - b) m ∣ ( a − b ) . According to the definition of congruence, we have
a ≡ b ( m o d m ) a \equiv b \pmod m a ≡ b ( mod m )
In summary, the two congruences are equivalent. Q.E.D.
Let prime p ⩾ 3 p \geqslant 3 p ⩾ 3 , if a 2 ≡ b 2 ( m o d p ) , p ∤ a a^2 \equiv b^2(\bmod p), p \nmid a a 2 ≡ b 2 ( mod p ) , p ∤ a , then a ≡ b ( m o d p ) a \equiv b(\bmod p) a ≡ b ( mod p ) or a ≡ − b ( m o d p ) a \equiv -b(\bmod p) a ≡ − b ( mod p ) and only one holds.
Proof: From a 2 ≡ b 2 ( m o d p ) a^2 \equiv b^2 \pmod p a 2 ≡ b 2 ( mod p ) , we can get a 2 − b 2 ≡ 0 ( m o d p ) a^2 - b^2 \equiv 0 \pmod p a 2 − b 2 ≡ 0 ( mod p ) , that is
( a − b ) ( a + b ) ≡ 0 ( m o d p ) (a - b)(a + b) \equiv 0 \pmod p ( a − b ) ( a + b ) ≡ 0 ( mod p )
Because p p p is a prime number, according to Euclid's Lemma, we must have p ∣ ( a − b ) p \mid (a - b) p ∣ ( a − b ) or p ∣ ( a + b ) p \mid (a + b) p ∣ ( a + b ) .
If p ∣ ( a − b ) p \mid (a - b) p ∣ ( a − b ) , then a ≡ b ( m o d p ) a \equiv b \pmod p a ≡ b ( mod p ) . If p ∣ ( a + b ) p \mid (a + b) p ∣ ( a + b ) , then a ≡ − b ( m o d p ) a \equiv -b \pmod p a ≡ − b ( mod p ) . Therefore, at least one of a ≡ b ( m o d p ) a \equiv b \pmod p a ≡ b ( mod p ) or a ≡ − b ( m o d p ) a \equiv -b \pmod p a ≡ − b ( mod p ) holds.
Next prove that only one holds. Assume a ≡ b ( m o d p ) a \equiv b \pmod p a ≡ b ( mod p ) and a ≡ − b ( m o d p ) a \equiv -b \pmod p a ≡ − b ( mod p ) hold simultaneously. Then b ≡ − b ( m o d p ) b \equiv -b \pmod p b ≡ − b ( mod p ) , that is 2 b ≡ 0 ( m o d p ) 2b \equiv 0 \pmod p 2 b ≡ 0 ( mod p ) . Because p p p is a prime number and p ≥ 3 p \ge 3 p ≥ 3 , so gcd ( 2 , p ) = 1 \gcd(2, p) = 1 g cd( 2 , p ) = 1 . According to the property of congruence, from 2 b ≡ 0 ( m o d p ) 2b \equiv 0 \pmod p 2 b ≡ 0 ( mod p ) we can get b ≡ 0 ( m o d p ) b \equiv 0 \pmod p b ≡ 0 ( mod p ) . Also because a ≡ b ( m o d p ) a \equiv b \pmod p a ≡ b ( mod p ) , so a ≡ 0 ( m o d p ) a \equiv 0 \pmod p a ≡ 0 ( mod p ) , that is p ∣ a p \mid a p ∣ a . This contradicts the condition p ∤ a p \nmid a p ∤ a .
Therefore, a ≡ b ( m o d p ) a \equiv b \pmod p a ≡ b ( mod p ) and a ≡ − b ( m o d p ) a \equiv -b \pmod p a ≡ − b ( mod p ) cannot hold simultaneously.
In summary, a ≡ b ( m o d p ) a \equiv b \pmod p a ≡ b ( mod p ) or a ≡ − b ( m o d p ) a \equiv -b \pmod p a ≡ − b ( mod p ) and only one holds. Q.E.D.
Let positive integer
a = a n 10 n + a n − 1 10 n − 1 + ⋯ + a 0 , 0 ⩽ a i < 10 a=a_n 10^n+a_{n-1} 10^{n-1}+\cdots+a_0, \quad 0 \leqslant a_i<10 a = a n 1 0 n + a n − 1 1 0 n − 1 + ⋯ + a 0 , 0 ⩽ a i < 10
Then the necessary and sufficient condition for 11 to divide a a a is
11 ∣ ∑ i = 1 n ( − 1 ) i a i 11 \mid \sum_{i=1}^n(-1)^i a_i 11 ∣ i = 1 ∑ n ( − 1 ) i a i
Proof: Consider the remainder of integer a a a modulo 11. We note that 10 ≡ − 1 ( m o d 11 ) 10 \equiv -1 \pmod{11} 10 ≡ − 1 ( mod 11 ) . According to the property of congruence, for any non-negative integer i i i , we have
10 i ≡ ( − 1 ) i ( m o d 11 ) 10^i \equiv (-1)^i \pmod{11} 1 0 i ≡ ( − 1 ) i ( mod 11 )
Now consider a a a modulo 11:
a = a n 10 n + a n − 1 10 n − 1 + ⋯ + a 1 10 1 + a 0 ≡ a n ( − 1 ) n + a n − 1 ( − 1 ) n − 1 + ⋯ + a 1 ( − 1 ) 1 + a 0 ( − 1 ) 0 ( m o d 11 ) ≡ ∑ i = 0 n a i ( − 1 ) i ( m o d 11 ) \begin{align} a &= a_n 10^n + a_{n-1} 10^{n-1} + \cdots + a_1 10^1 + a_0 \\ &\equiv a_n (-1)^n + a_{n-1} (-1)^{n-1} + \cdots + a_1 (-1)^1 + a_0 (-1)^0 \pmod{11} \\ &\equiv \sum_{i=0}^n a_i (-1)^i \pmod{11} \end{align} a = a n 1 0 n + a n − 1 1 0 n − 1 + ⋯ + a 1 1 0 1 + a 0 ≡ a n ( − 1 ) n + a n − 1 ( − 1 ) n − 1 + ⋯ + a 1 ( − 1 ) 1 + a 0 ( − 1 ) 0 ( mod 11 ) ≡ i = 0 ∑ n a i ( − 1 ) i ( mod 11 )
Therefore, a ≡ 0 ( m o d 11 ) a \equiv 0 \pmod{11} a ≡ 0 ( mod 11 ) if and only if ∑ i = 0 n ( − 1 ) i a i ≡ 0 ( m o d 11 ) \sum_{i=0}^n (-1)^i a_i \equiv 0 \pmod{11} ∑ i = 0 n ( − 1 ) i a i ≡ 0 ( mod 11 ) .
Q.E.D.
Find the criteria for an integer to be divisible by 37, 101.
Solution: Let the decimal representation of integer N N N be a k a k − 1 ⋯ a 1 a 0 = ∑ i = 0 k a i 10 i a_k a_{k-1} \cdots a_1 a_0 = \sum_{i=0}^k a_i 10^i a k a k − 1 ⋯ a 1 a 0 = ∑ i = 0 k a i 1 0 i .
Criterion for divisibility by 37: We note that 1000 = 27 × 37 + 1 1000 = 27 \times 37 + 1 1000 = 27 × 37 + 1 , so 1000 ≡ 1 ( m o d 37 ) 1000 \equiv 1 \pmod{37} 1000 ≡ 1 ( mod 37 ) . Group the integer N N N every three digits from right to left:
N = ( a 2 a 1 a 0 ) 10 + ( a 5 a 4 a 3 ) 10 ⋅ 10 3 + ( a 8 a 7 a 6 ) 10 ⋅ 10 6 + ⋯ N = (a_2 a_1 a_0)_{10} + (a_5 a_4 a_3)_{10} \cdot 10^3 + (a_8 a_7 a_6)_{10} \cdot 10^6 + \cdots N = ( a 2 a 1 a 0 ) 10 + ( a 5 a 4 a 3 ) 10 ⋅ 1 0 3 + ( a 8 a 7 a 6 ) 10 ⋅ 1 0 6 + ⋯
Let A 0 = ( a 2 a 1 a 0 ) 10 = 100 a 2 + 10 a 1 + a 0 A_0 = (a_2 a_1 a_0)_{10} = 100a_2 + 10a_1 + a_0 A 0 = ( a 2 a 1 a 0 ) 10 = 100 a 2 + 10 a 1 + a 0 , A 1 = ( a 5 a 4 a 3 ) 10 = 100 a 5 + 10 a 4 + a 3 A_1 = (a_5 a_4 a_3)_{10} = 100a_5 + 10a_4 + a_3 A 1 = ( a 5 a 4 a 3 ) 10 = 100 a 5 + 10 a 4 + a 3 , and so on. Then N = A 0 + A 1 ⋅ 10 3 + A 2 ⋅ ( 10 3 ) 2 + ⋯ N = A_0 + A_1 \cdot 10^3 + A_2 \cdot (10^3)^2 + \cdots N = A 0 + A 1 ⋅ 1 0 3 + A 2 ⋅ ( 1 0 3 ) 2 + ⋯ . Consider N N N modulo 37:
N ≡ A 0 + A 1 ⋅ 1 + A 2 ⋅ 1 2 + ⋯ ( m o d 37 ) ≡ A 0 + A 1 + A 2 + ⋯ ( m o d 37 ) \begin{align} N &\equiv A_0 + A_1 \cdot 1 + A_2 \cdot 1^2 + \cdots \pmod{37} \\ &\equiv A_0 + A_1 + A_2 + \cdots \pmod{37} \end{align} N ≡ A 0 + A 1 ⋅ 1 + A 2 ⋅ 1 2 + ⋯ ( mod 37 ) ≡ A 0 + A 1 + A 2 + ⋯ ( mod 37 )
Therefore, a necessary and sufficient condition for an integer to be divisible by 37 is: group it every three digits from right to left, and the sum of the numbers represented by these groups is divisible by 37.
Criterion for divisibility by 101: We note that 100 = 1 × 101 − 1 100 = 1 \times 101 - 1 100 = 1 × 101 − 1 , so 100 ≡ − 1 ( m o d 101 ) 100 \equiv -1 \pmod{101} 100 ≡ − 1 ( mod 101 ) . Group the integer N N N every two digits from right to left:
N = ( a 1 a 0 ) 10 + ( a 3 a 2 ) 10 ⋅ 10 2 + ( a 5 a 4 ) 10 ⋅ 10 4 + ⋯ N = (a_1 a_0)_{10} + (a_3 a_2)_{10} \cdot 10^2 + (a_5 a_4)_{10} \cdot 10^4 + \cdots N = ( a 1 a 0 ) 10 + ( a 3 a 2 ) 10 ⋅ 1 0 2 + ( a 5 a 4 ) 10 ⋅ 1 0 4 + ⋯
Let B 0 = ( a 1 a 0 ) 10 = 10 a 1 + a 0 B_0 = (a_1 a_0)_{10} = 10a_1 + a_0 B 0 = ( a 1 a 0 ) 10 = 10 a 1 + a 0 , B 1 = ( a 3 a 2 ) 10 = 10 a 3 + a 2 B_1 = (a_3 a_2)_{10} = 10a_3 + a_2 B 1 = ( a 3 a 2 ) 10 = 10 a 3 + a 2 , and so on. Then N = B 0 + B 1 ⋅ 10 2 + B 2 ⋅ ( 10 2 ) 2 + ⋯ N = B_0 + B_1 \cdot 10^2 + B_2 \cdot (10^2)^2 + \cdots N = B 0 + B 1 ⋅ 1 0 2 + B 2 ⋅ ( 1 0 2 ) 2 + ⋯ . Consider N N N modulo 101:
N ≡ B 0 + B 1 ⋅ ( − 1 ) + B 2 ⋅ ( − 1 ) 2 + B 3 ⋅ ( − 1 ) 3 + ⋯ ( m o d 101 ) ≡ B 0 − B 1 + B 2 − B 3 + ⋯ ( m o d 101 ) \begin{align} N &\equiv B_0 + B_1 \cdot (-1) + B_2 \cdot (-1)^2 + B_3 \cdot (-1)^3 + \cdots \pmod{101} \\ &\equiv B_0 - B_1 + B_2 - B_3 + \cdots \pmod{101} \end{align} N ≡ B 0 + B 1 ⋅ ( − 1 ) + B 2 ⋅ ( − 1 ) 2 + B 3 ⋅ ( − 1 ) 3 + ⋯ ( mod 101 ) ≡ B 0 − B 1 + B 2 − B 3 + ⋯ ( mod 101 )
Therefore, a necessary and sufficient condition for an integer to be divisible by 101 is: group it every two digits from right to left, and the alternating sum of the numbers represented by these groups (from right to left, signs are + − + − ⋯ + - + - \cdots + − + − ⋯ ) is divisible by 101.
Prove: 641 ∣ ( 2 32 + 1 ) 641 \mid\left(2^{32}+1\right) 641 ∣ ( 2 32 + 1 ) .
Proof:
Note that 641 = 5 ⋅ 2 7 + 1 = 5 4 + 2 4 641 = 5 \cdot 2^7 + 1 = 5^4 + 2^4 641 = 5 ⋅ 2 7 + 1 = 5 4 + 2 4 .
From 641 = 5 ⋅ 2 7 + 1 641 = 5 \cdot 2^7 + 1 641 = 5 ⋅ 2 7 + 1 , we get
5 ⋅ 2 7 ≡ − 1 ( m o d 641 ) 5 \cdot 2^7 \equiv -1 \pmod{641} 5 ⋅ 2 7 ≡ − 1 ( mod 641 )
Take the 4th power on both sides, we get
( 5 ⋅ 2 7 ) 4 ≡ ( − 1 ) 4 ( m o d 641 ) (5 \cdot 2^7)^4 \equiv (-1)^4 \pmod{641} ( 5 ⋅ 2 7 ) 4 ≡ ( − 1 ) 4 ( mod 641 )
5 4 ⋅ 2 28 ≡ 1 ( m o d 641 ) 5^4 \cdot 2^{28} \equiv 1 \pmod{641} 5 4 ⋅ 2 28 ≡ 1 ( mod 641 )
Also from 641 = 5 4 + 2 4 641 = 5^4 + 2^4 641 = 5 4 + 2 4 , we get
5 4 ≡ − 2 4 ( m o d 641 ) 5^4 \equiv -2^4 \pmod{641} 5 4 ≡ − 2 4 ( mod 641 )
Substitute into the above equation, we get
( − 2 4 ) ⋅ 2 28 ≡ 1 ( m o d 641 ) (-2^4) \cdot 2^{28} \equiv 1 \pmod{641} ( − 2 4 ) ⋅ 2 28 ≡ 1 ( mod 641 )
− 2 32 ≡ 1 ( m o d 641 ) -2^{32} \equiv 1 \pmod{641} − 2 32 ≡ 1 ( mod 641 )
That is
2 32 ≡ − 1 ( m o d 641 ) 2^{32} \equiv -1 \pmod{641} 2 32 ≡ − 1 ( mod 641 )
Therefore, 2 32 + 1 ≡ 0 ( m o d 641 ) 2^{32} + 1 \equiv 0 \pmod{641} 2 32 + 1 ≡ 0 ( mod 641 ) , i.e., 641 ∣ ( 2 32 + 1 ) 641 \mid (2^{32}+1) 641 ∣ ( 2 32 + 1 ) .
If a a a is an odd number, then a 2 n ≡ 1 ( m o d 2 n + 2 ) , n ⩾ 1 a^{2^n} \equiv 1\left(\bmod 2^{n+2}\right), \quad n \geqslant 1 a 2 n ≡ 1 ( mod 2 n + 2 ) , n ⩾ 1 .
Proof:
Prove by mathematical induction.
Base case: When n = 1 n=1 n = 1 , need to prove a 2 1 ≡ 1 ( m o d 2 1 + 2 ) a^{2^1} \equiv 1 \pmod{2^{1+2}} a 2 1 ≡ 1 ( mod 2 1 + 2 ) , i.e., a 2 ≡ 1 ( m o d 8 ) a^2 \equiv 1 \pmod 8 a 2 ≡ 1 ( mod 8 ) .
Because a a a is an odd number, let a = 2 k + 1 a=2k+1 a = 2 k + 1 , where k k k is an integer.
a 2 = ( 2 k + 1 ) 2 = 4 k 2 + 4 k + 1 = 4 k ( k + 1 ) + 1 a^2 = (2k+1)^2 = 4k^2+4k+1 = 4k(k+1)+1 a 2 = ( 2 k + 1 ) 2 = 4 k 2 + 4 k + 1 = 4 k ( k + 1 ) + 1
Since k ( k + 1 ) k(k+1) k ( k + 1 ) must be even, let k ( k + 1 ) = 2 j k(k+1)=2j k ( k + 1 ) = 2 j , where j j j is an integer. Then a 2 = 4 ( 2 j ) + 1 = 8 j + 1 ≡ 1 ( m o d 8 ) a^2 = 4(2j)+1 = 8j+1 \equiv 1 \pmod 8 a 2 = 4 ( 2 j ) + 1 = 8 j + 1 ≡ 1 ( mod 8 ) .
So the proposition holds when n = 1 n=1 n = 1 .
Inductive step: Assume the proposition holds when n = k n=k n = k (k ≥ 1 k \ge 1 k ≥ 1 ), i.e., a 2 k ≡ 1 ( m o d 2 k + 2 ) a^{2^k} \equiv 1 \pmod{2^{k+2}} a 2 k ≡ 1 ( mod 2 k + 2 ) .
This means there exists an integer c c c such that a 2 k = 1 + c ⋅ 2 k + 2 a^{2^k} = 1 + c \cdot 2^{k+2} a 2 k = 1 + c ⋅ 2 k + 2 .
Need to prove that the proposition also holds when n = k + 1 n=k+1 n = k + 1 , i.e., a 2 k + 1 ≡ 1 ( m o d 2 ( k + 1 ) + 2 ) a^{2^{k+1}} \equiv 1 \pmod{2^{(k+1)+2}} a 2 k + 1 ≡ 1 ( mod 2 ( k + 1 ) + 2 ) , i.e., a 2 k + 1 ≡ 1 ( m o d 2 k + 3 ) a^{2^{k+1}} \equiv 1 \pmod{2^{k+3}} a 2 k + 1 ≡ 1 ( mod 2 k + 3 ) .
a 2 k + 1 = ( a 2 k ) 2 = ( 1 + c ⋅ 2 k + 2 ) 2 = 1 + 2 ⋅ ( c ⋅ 2 k + 2 ) + ( c ⋅ 2 k + 2 ) 2 = 1 + c ⋅ 2 k + 3 + c 2 ⋅ 2 2 ( k + 2 ) = 1 + c ⋅ 2 k + 3 + c 2 ⋅ 2 2 k + 4 \begin{align} a^{2^{k+1}} &= (a^{2^k})^2 \\ &= (1 + c \cdot 2^{k+2})^2 \\ &= 1 + 2 \cdot (c \cdot 2^{k+2}) + (c \cdot 2^{k+2})^2 \\ &= 1 + c \cdot 2^{k+3} + c^2 \cdot 2^{2(k+2)} \\ &= 1 + c \cdot 2^{k+3} + c^2 \cdot 2^{2k+4} \end{align} a 2 k + 1 = ( a 2 k ) 2 = ( 1 + c ⋅ 2 k + 2 ) 2 = 1 + 2 ⋅ ( c ⋅ 2 k + 2 ) + ( c ⋅ 2 k + 2 ) 2 = 1 + c ⋅ 2 k + 3 + c 2 ⋅ 2 2 ( k + 2 ) = 1 + c ⋅ 2 k + 3 + c 2 ⋅ 2 2 k + 4
Because k ≥ 1 k \ge 1 k ≥ 1 , so 2 k + 4 = ( k + 3 ) + ( k + 1 ) ≥ k + 3 + 2 = k + 5 2k+4 = (k+3) + (k+1) \ge k+3+2 = k+5 2 k + 4 = ( k + 3 ) + ( k + 1 ) ≥ k + 3 + 2 = k + 5 .
Therefore 2 k + 3 ∣ c 2 ⋅ 2 2 k + 4 2^{k+3} \mid c^2 \cdot 2^{2k+4} 2 k + 3 ∣ c 2 ⋅ 2 2 k + 4 .
So
a 2 k + 1 ≡ 1 + c ⋅ 2 k + 3 ( m o d 2 k + 3 ) a^{2^{k+1}} \equiv 1 + c \cdot 2^{k+3} \pmod{2^{k+3}} a 2 k + 1 ≡ 1 + c ⋅ 2 k + 3 ( mod 2 k + 3 )
a 2 k + 1 ≡ 1 ( m o d 2 k + 3 ) a^{2^{k+1}} \equiv 1 \pmod{2^{k+3}} a 2 k + 1 ≡ 1 ( mod 2 k + 3 )
The proposition holds when n = k + 1 n=k+1 n = k + 1 .
By the principle of mathematical induction, the original proposition holds for all n ≥ 1 n \ge 1 n ≥ 1 .
Prove:
x = u + p s − t v , u = 0 , 1 , 2 , ⋯ , p s − t − 1 , v = 0 , 1 , 2 , ⋯ , p t − 1 , t ⩽ s x=u+p^{s-t} v, \quad u=0,1,2, \cdots, p^{s-t}-1, \quad v=0,1,2, \cdots, p^t-1, \quad t \leqslant s x = u + p s − t v , u = 0 , 1 , 2 , ⋯ , p s − t − 1 , v = 0 , 1 , 2 , ⋯ , p t − 1 , t ⩽ s
is a complete residue system modulo p s p^s p s (p p p is a prime number).
Proof:
First, calculate the number of possible values of x x x .
u u u has p s − t p^{s-t} p s − t possible values. v v v has p t p^t p t possible values.
Therefore, the total number of possible values of x x x is p s − t ⋅ p t = p s p^{s-t} \cdot p^t = p^s p s − t ⋅ p t = p s . This is the same as the number of elements in the complete residue system modulo p s p^s p s .
Next, prove that these values are pairwise incongruent modulo p s p^s p s .
Assume there exist two sets ( u 1 , v 1 ) (u_1, v_1) ( u 1 , v 1 ) and ( u 2 , v 2 ) (u_2, v_2) ( u 2 , v 2 ) , where 0 ≤ u 1 , u 2 < p s − t 0 \le u_1, u_2 < p^{s-t} 0 ≤ u 1 , u 2 < p s − t and 0 ≤ v 1 , v 2 < p t 0 \le v_1, v_2 < p^t 0 ≤ v 1 , v 2 < p t , such that
u 1 + p s − t v 1 ≡ u 2 + p s − t v 2 ( m o d p s ) u_1 + p^{s-t} v_1 \equiv u_2 + p^{s-t} v_2 \pmod{p^s} u 1 + p s − t v 1 ≡ u 2 + p s − t v 2 ( mod p s )
This means
( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) ≡ 0 ( m o d p s ) (u_1 - u_2) + p^{s-t} (v_1 - v_2) \equiv 0 \pmod{p^s} ( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) ≡ 0 ( mod p s )
From this we know p s ∣ ( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) p^s \mid (u_1 - u_2) + p^{s-t} (v_1 - v_2) p s ∣ ( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) .
This also means
( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) ≡ 0 ( m o d p s − t ) (u_1 - u_2) + p^{s-t} (v_1 - v_2) \equiv 0 \pmod{p^{s-t}} ( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) ≡ 0 ( mod p s − t )
Because p s − t ( v 1 − v 2 ) ≡ 0 ( m o d p s − t ) p^{s-t} (v_1 - v_2) \equiv 0 \pmod{p^{s-t}} p s − t ( v 1 − v 2 ) ≡ 0 ( mod p s − t ) , so
u 1 − u 2 ≡ 0 ( m o d p s − t ) u_1 - u_2 \equiv 0 \pmod{p^{s-t}} u 1 − u 2 ≡ 0 ( mod p s − t )
That is p s − t ∣ ( u 1 − u 2 ) p^{s-t} \mid (u_1 - u_2) p s − t ∣ ( u 1 − u 2 ) .
Also because 0 ≤ u 1 , u 2 < p s − t 0 \le u_1, u_2 < p^{s-t} 0 ≤ u 1 , u 2 < p s − t , so − ( p s − t ) < u 1 − u 2 < p s − t -(p^{s-t}) < u_1 - u_2 < p^{s-t} − ( p s − t ) < u 1 − u 2 < p s − t .
The only possibility satisfying p s − t ∣ ( u 1 − u 2 ) p^{s-t} \mid (u_1 - u_2) p s − t ∣ ( u 1 − u 2 ) is u 1 − u 2 = 0 u_1 - u_2 = 0 u 1 − u 2 = 0 , i.e., u 1 = u 2 u_1 = u_2 u 1 = u 2 .
Substitute u 1 = u 2 u_1 = u_2 u 1 = u 2 into the original congruence ( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) ≡ 0 ( m o d p s ) (u_1 - u_2) + p^{s-t} (v_1 - v_2) \equiv 0 \pmod{p^s} ( u 1 − u 2 ) + p s − t ( v 1 − v 2 ) ≡ 0 ( mod p s ) , we get
p s − t ( v 1 − v 2 ) ≡ 0 ( m o d p s ) p^{s-t} (v_1 - v_2) \equiv 0 \pmod{p^s} p s − t ( v 1 − v 2 ) ≡ 0 ( mod p s )
This means there exists an integer k k k such that p s − t ( v 1 − v 2 ) = k ⋅ p s p^{s-t} (v_1 - v_2) = k \cdot p^s p s − t ( v 1 − v 2 ) = k ⋅ p s .
Divide both sides by p s − t p^{s-t} p s − t (since t ≤ s t \le s t ≤ s , s − t ≥ 0 s-t \ge 0 s − t ≥ 0 ), we get
v 1 − v 2 = k ⋅ p s / p s − t = k ⋅ p t v_1 - v_2 = k \cdot p^s / p^{s-t} = k \cdot p^t v 1 − v 2 = k ⋅ p s / p s − t = k ⋅ p t
This means p t ∣ ( v 1 − v 2 ) p^t \mid (v_1 - v_2) p t ∣ ( v 1 − v 2 ) .
Also because 0 ≤ v 1 , v 2 < p t 0 \le v_1, v_2 < p^t 0 ≤ v 1 , v 2 < p t , so − p t < v 1 − v 2 < p t -p^t < v_1 - v_2 < p^t − p t < v 1 − v 2 < p t .
The only possibility satisfying p t ∣ ( v 1 − v 2 ) p^t \mid (v_1 - v_2) p t ∣ ( v 1 − v 2 ) is v 1 − v 2 = 0 v_1 - v_2 = 0 v 1 − v 2 = 0 , i.e., v 1 = v 2 v_1 = v_2 v 1 = v 2 .
Therefore, if u 1 + p s − t v 1 ≡ u 2 + p s − t v 2 ( m o d p s ) u_1 + p^{s-t} v_1 \equiv u_2 + p^{s-t} v_2 \pmod{p^s} u 1 + p s − t v 1 ≡ u 2 + p s − t v 2 ( mod p s ) , then we must have u 1 = u 2 u_1 = u_2 u 1 = u 2 and v 1 = v 2 v_1 = v_2 v 1 = v 2 .
This shows that the p s p^s p s numbers in this set are pairwise incongruent modulo p s p^s p s .
In summary, this set constitutes a complete residue system modulo p s p^s p s .
If 2 ∤ m 2 \nmid m 2 ∤ m , then 2 , 4 , 6 , ⋯ , 2 m 2,4,6, \cdots, 2 m 2 , 4 , 6 , ⋯ , 2 m is a complete residue system modulo m m m ; If m > 2 m>2 m > 2 , then 1 2 , 2 2 , 3 2 , ⋯ , m 2 1^2, 2^2, 3^2, \cdots, m^2 1 2 , 2 2 , 3 2 , ⋯ , m 2 is not a complete residue system modulo m m m . Proof:
The set is S = { 2 k ∣ 1 ≤ k ≤ m } S = \{2k \mid 1 \le k \le m\} S = { 2 k ∣ 1 ≤ k ≤ m } . This set contains m m m integers. We need to prove that these m m m integers are pairwise incongruent modulo m m m .
Assume there exist 1 ≤ k 1 , k 2 ≤ m 1 \le k_1, k_2 \le m 1 ≤ k 1 , k 2 ≤ m such that 2 k 1 ≡ 2 k 2 ( m o d m ) 2k_1 \equiv 2k_2 \pmod m 2 k 1 ≡ 2 k 2 ( mod m ) .
Then m ∣ ( 2 k 1 − 2 k 2 ) m \mid (2k_1 - 2k_2) m ∣ ( 2 k 1 − 2 k 2 ) , i.e., m ∣ 2 ( k 1 − k 2 ) m \mid 2(k_1 - k_2) m ∣ 2 ( k 1 − k 2 ) .
Because m m m is odd, gcd ( 2 , m ) = 1 \gcd(2, m) = 1 g cd( 2 , m ) = 1 .
According to the property of congruence, factor 2 can be cancelled, getting
k 1 ≡ k 2 ( m o d m ) k_1 \equiv k_2 \pmod m k 1 ≡ k 2 ( mod m )
That is m ∣ ( k 1 − k 2 ) m \mid (k_1 - k_2) m ∣ ( k 1 − k 2 ) .
Also because 1 ≤ k 1 , k 2 ≤ m 1 \le k_1, k_2 \le m 1 ≤ k 1 , k 2 ≤ m , so ∣ k 1 − k 2 ∣ < m |k_1 - k_2| < m ∣ k 1 − k 2 ∣ < m .
The only possibility satisfying m ∣ ( k 1 − k 2 ) m \mid (k_1 - k_2) m ∣ ( k 1 − k 2 ) is k 1 − k 2 = 0 k_1 - k_2 = 0 k 1 − k 2 = 0 , i.e., k 1 = k 2 k_1 = k_2 k 1 = k 2 .
Therefore, the m m m integers in set S S S are pairwise incongruent modulo m m m .
Since the set size is m m m , it constitutes a complete residue system modulo m m m .
Consider the set T = { k 2 ∣ 1 ≤ k ≤ m } T = \{k^2 \mid 1 \le k \le m\} T = { k 2 ∣ 1 ≤ k ≤ m } . We need to prove that when m > 2 m>2 m > 2 , the numbers in this set are not pairwise incongruent modulo m m m .
Consider k = 1 k=1 k = 1 and k = m − 1 k=m-1 k = m − 1 . Because m > 2 m>2 m > 2 , so m − 1 ≥ 2 m-1 \ge 2 m − 1 ≥ 2 , and 1 ≠ m − 1 1 \ne m-1 1 = m − 1 . They are both distinct elements in { 1 , 2 , … , m } \{1, 2, \dots, m\} { 1 , 2 , … , m } .
Calculate their squares modulo m m m :
1 2 = 1 ≡ 1 ( m o d m ) 1^2 = 1 \equiv 1 \pmod m 1 2 = 1 ≡ 1 ( mod m )
( m − 1 ) 2 = m 2 − 2 m + 1 (m-1)^2 = m^2 - 2m + 1 ( m − 1 ) 2 = m 2 − 2 m + 1
Because m 2 ≡ 0 ( m o d m ) m^2 \equiv 0 \pmod m m 2 ≡ 0 ( mod m ) and − 2 m ≡ 0 ( m o d m ) -2m \equiv 0 \pmod m − 2 m ≡ 0 ( mod m ) , so
( m − 1 ) 2 ≡ 0 − 0 + 1 ≡ 1 ( m o d m ) (m-1)^2 \equiv 0 - 0 + 1 \equiv 1 \pmod m ( m − 1 ) 2 ≡ 0 − 0 + 1 ≡ 1 ( mod m )
Therefore, we found two distinct integers 1 1 1 and m − 1 m-1 m − 1 (1 ≤ 1 , m − 1 ≤ m 1 \le 1, m-1 \le m 1 ≤ 1 , m − 1 ≤ m ) whose squares are congruent modulo m m m .
This means that at least two elements in set T T T are the same (modulo m m m ), so it cannot contain m m m pairwise incongruent numbers.
So 1 2 , 2 2 , ⋯ , m 2 1^2, 2^2, \cdots, m^2 1 2 , 2 2 , ⋯ , m 2 is not a complete residue system modulo m m m .
If m 1 , m 2 , ⋯ , m k m_1, m_2, \cdots, m_k m 1 , m 2 , ⋯ , m k are pairwise coprime, x 1 , x 2 , ⋯ , x k x_1, x_2, \cdots, x_k x 1 , x 2 , ⋯ , x k pass through the complete residue systems modulo m 1 , m 2 , ⋯ , m k m_1, m_2, \cdots, m_k m 1 , m 2 , ⋯ , m k respectively, then
x = x 1 + m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 m 2 ⋯ m k − 1 x k x = x_1+m_1 x_2+m_1 m_2 x_3+\cdots+m_1 m_2 \cdots m_{k-1} x_k x = x 1 + m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 m 2 ⋯ m k − 1 x k
passes through the complete residue system modulo m 1 m 2 ⋯ m k m_1 m_2 \cdots m_k m 1 m 2 ⋯ m k .
Proof:
Let M = m 1 m 2 ⋯ m k M = m_1 m_2 \cdots m_k M = m 1 m 2 ⋯ m k .
First, calculate the number of possible values of x x x .
x 1 x_1 x 1 has m 1 m_1 m 1 possible values. x 2 x_2 x 2 has m 2 m_2 m 2 possible values. ... x k x_k x k has m k m_k m k possible values.
Since the choices of x i x_i x i are independent, the total number of values of x x x is m 1 m 2 ⋯ m k = M m_1 m_2 \cdots m_k = M m 1 m 2 ⋯ m k = M . This is the same as the number of elements in the complete residue system modulo M M M .
Next, prove that these values are pairwise incongruent modulo M M M .
Assume there exist two sets ( x 1 , x 2 , … , x k ) (x_1, x_2, \dots, x_k) ( x 1 , x 2 , … , x k ) and ( x 1 ′ , x 2 ′ , … , x k ′ ) (x'_1, x'_2, \dots, x'_k) ( x 1 ′ , x 2 ′ , … , x k ′ ) , where x i , x i ′ x_i, x'_i x i , x i ′ are representatives of the complete residue system modulo m i m_i m i respectively, such that
x 1 + m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 ⋯ m k − 1 x k ≡ x 1 ′ + m 1 x 2 ′ + m 1 m 2 x 3 ′ + ⋯ + m 1 ⋯ m k − 1 x k ′ ( m o d M ) x_1+m_1 x_2+m_1 m_2 x_3+\cdots+m_1 \cdots m_{k-1} x_k \equiv x'_1+m_1 x'_2+m_1 m_2 x'_3+\cdots+m_1 \cdots m_{k-1} x'_k \pmod M x 1 + m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 ⋯ m k − 1 x k ≡ x 1 ′ + m 1 x 2 ′ + m 1 m 2 x 3 ′ + ⋯ + m 1 ⋯ m k − 1 x k ′ ( mod M )
Denote this congruence as ( ∗ ) (*) ( ∗ ) .
Because m 1 ∣ M m_1 \mid M m 1 ∣ M , the above congruence also implies congruence modulo m 1 m_1 m 1 :
x 1 + m 1 x 2 + ⋯ + m 1 ⋯ m k − 1 x k ≡ x 1 ′ + m 1 x 2 ′ + ⋯ + m 1 ⋯ m k − 1 x k ′ ( m o d m 1 ) x_1+m_1 x_2+\cdots+m_1 \cdots m_{k-1} x_k \equiv x'_1+m_1 x'_2+\cdots+m_1 \cdots m_{k-1} x'_k \pmod{m_1} x 1 + m 1 x 2 + ⋯ + m 1 ⋯ m k − 1 x k ≡ x 1 ′ + m 1 x 2 ′ + ⋯ + m 1 ⋯ m k − 1 x k ′ ( mod m 1 )
Since m 1 x 2 , m 1 m 2 x 3 , … m_1 x_2, m_1 m_2 x_3, \dots m 1 x 2 , m 1 m 2 x 3 , … are all multiples of m 1 m_1 m 1 , they are all congruent to 0 modulo m 1 m_1 m 1 .
So x 1 ≡ x 1 ′ ( m o d m 1 ) x_1 \equiv x'_1 \pmod{m_1} x 1 ≡ x 1 ′ ( mod m 1 ) .
Because x 1 , x 1 ′ x_1, x'_1 x 1 , x 1 ′ both come from a complete residue system modulo m 1 m_1 m 1 , so x 1 = x 1 ′ x_1 = x'_1 x 1 = x 1 ′ .
Substitute x 1 = x 1 ′ x_1 = x'_1 x 1 = x 1 ′ into ( ∗ ) (*) ( ∗ ) and cancel, we get
m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 ⋯ m k − 1 x k ≡ m 1 x 2 ′ + m 1 m 2 x 3 ′ + ⋯ + m 1 ⋯ m k − 1 x k ′ ( m o d M ) m_1 x_2+m_1 m_2 x_3+\cdots+m_1 \cdots m_{k-1} x_k \equiv m_1 x'_2+m_1 m_2 x'_3+\cdots+m_1 \cdots m_{k-1} x'_k \pmod M m 1 x 2 + m 1 m 2 x 3 + ⋯ + m 1 ⋯ m k − 1 x k ≡ m 1 x 2 ′ + m 1 m 2 x 3 ′ + ⋯ + m 1 ⋯ m k − 1 x k ′ ( mod M )
Divide both sides by m 1 m_1 m 1 (this is allowed because M = m 1 ( m 2 ⋯ m k ) M = m_1 (m_2 \cdots m_k) M = m 1 ( m 2 ⋯ m k ) ), we get
x 2 + m 2 x 3 + ⋯ + m 2 ⋯ m k − 1 x k ≡ x 2 ′ + m 2 x 3 ′ + ⋯ + m 2 ⋯ m k − 1 x k ′ ( m o d m 2 ⋯ m k ) x_2+m_2 x_3+\cdots+m_2 \cdots m_{k-1} x_k \equiv x'_2+m_2 x'_3+\cdots+m_2 \cdots m_{k-1} x'_k \pmod{m_2 \cdots m_k} x 2 + m 2 x 3 + ⋯ + m 2 ⋯ m k − 1 x k ≡ x 2 ′ + m 2 x 3 ′ + ⋯ + m 2 ⋯ m k − 1 x k ′ ( mod m 2 ⋯ m k )
Denote this congruence as ( ∗ ∗ ) (**) ( ∗ ∗ ) .
Because m 2 ∣ ( m 2 ⋯ m k ) m_2 \mid (m_2 \cdots m_k) m 2 ∣ ( m 2 ⋯ m k ) , the above congruence also implies congruence modulo m 2 m_2 m 2 :
x 2 + m 2 x 3 + ⋯ ≡ x 2 ′ + m 2 x 3 ′ + … ( m o d m 2 ) x_2 + m_2 x_3 + \dots \equiv x'_2 + m_2 x'_3 + \dots \pmod{m_2} x 2 + m 2 x 3 + ⋯ ≡ x 2 ′ + m 2 x 3 ′ + … ( mod m 2 )
x 2 ≡ x 2 ′ ( m o d m 2 ) x_2 \equiv x'_2 \pmod{m_2} x 2 ≡ x 2 ′ ( mod m 2 )
Because x 2 , x 2 ′ x_2, x'_2 x 2 , x 2 ′ both come from a complete residue system modulo m 2 m_2 m 2 , so x 2 = x 2 ′ x_2 = x'_2 x 2 = x 2 ′ .
We can continue this process. Assume we have proved x 1 = x 1 ′ , x 2 = x 2 ′ , … , x j − 1 = x j − 1 ′ x_1 = x'_1, x_2 = x'_2, \dots, x_{j-1} = x'_{j-1} x 1 = x 1 ′ , x 2 = x 2 ′ , … , x j − 1 = x j − 1 ′ .
Substitute these into ( ∗ ) (*) ( ∗ ) and cancel the corresponding terms, then divide both sides by m 1 m 2 ⋯ m j − 1 m_1 m_2 \cdots m_{j-1} m 1 m 2 ⋯ m j − 1 , we get
x j + m j x j + 1 + ⋯ + m j ⋯ m k − 1 x k ≡ x j ′ + m j x j + 1 ′ + ⋯ + m j ⋯ m k − 1 x k ′ ( m o d m j m j + 1 ⋯ m k ) x_j+m_j x_{j+1}+\cdots+m_j \cdots m_{k-1} x_k \equiv x'_j+m_j x'_{j+1}+\cdots+m_j \cdots m_{k-1} x'_k \pmod{m_j m_{j+1} \cdots m_k} x j + m j x j + 1 + ⋯ + m j ⋯ m k − 1 x k ≡ x j ′ + m j x j + 1 ′ + ⋯ + m j ⋯ m k − 1 x k ′ ( mod m j m j + 1 ⋯ m k )
Consider modulo m j m_j m j , we get
x j ≡ x j ′ ( m o d m j ) x_j \equiv x'_j \pmod{m_j} x j ≡ x j ′ ( mod m j )
Because x j , x j ′ x_j, x'_j x j , x j ′ both come from a complete residue system modulo m j m_j m j , so x j = x j ′ x_j = x'_j x j = x j ′ .
By induction, we can prove that for all j = 1 , 2 , … , k j=1, 2, \dots, k j = 1 , 2 , … , k , we have x j = x j ′ x_j = x'_j x j = x j ′ .
Therefore, if two x x x values are congruent modulo M M M , they must be generated by exactly the same ( x 1 , … , x k ) (x_1, \dots, x_k) ( x 1 , … , x k ) sequence.
This proves that the M M M x x x values generated by different sequences are pairwise incongruent modulo M M M .
In summary, these x x x values constitute a complete residue system modulo M M M .
(1) Find the last digit of 3 400 3^{400} 3 400 ; (2) Find the remainder of ( 12371 56 + 34 ) 28 \left(12371^{56}+34\right)^{28} ( 1237 1 56 + 34 ) 28 divided by 111.
Solution:
(1) 3 400 ≡ 3 4 × 100 ≡ ( 3 4 ) 100 ≡ 1 100 ≡ 1 ( m o d 10 ) 3^{400} \equiv 3^{4 \times 100} \equiv (3^4)^{100} \equiv 1^{100} \equiv 1 \pmod{10} 3 400 ≡ 3 4 × 100 ≡ ( 3 4 ) 100 ≡ 1 100 ≡ 1 ( mod 10 )
So its last digit is 1.
(2) Note that 12371 ≡ 111 2 + 50 12371 \equiv 111^2 + 50 12371 ≡ 11 1 2 + 50 , so
12371 ≡ 50 ( m o d 111 ) 12371 \equiv 50 \pmod{111} 12371 ≡ 50 ( mod 111 )
So
( 12371 56 + 34 ) 28 ≡ ( 50 56 + 34 ) 28 ( m o d 111 ) (12371^{56} + 34)^{28} \equiv (50^{56} + 34)^{28} \pmod{111} ( 1237 1 56 + 34 ) 28 ≡ ( 5 0 56 + 34 ) 28 ( mod 111 )
We have
50 2 ≡ 58 ( m o d 111 ) 50 4 ≡ 34 ( m o d 111 ) 50 8 ≡ 46 ( m o d 111 ) 50 16 ≡ 7 ( m o d 111 ) 50 32 ≡ 49 ( m o d 111 ) \begin{align} 50^2 &\equiv 58 \pmod{111}\\ 50^4 &\equiv 34 \pmod{111}\\ 50^8 &\equiv 46 \pmod{111}\\ 50^{16} &\equiv 7 \pmod{111}\\ 50^{32} &\equiv 49 \pmod{111} \end{align} 5 0 2 5 0 4 5 0 8 5 0 16 5 0 32 ≡ 58 ( mod 111 ) ≡ 34 ( mod 111 ) ≡ 46 ( mod 111 ) ≡ 7 ( mod 111 ) ≡ 49 ( mod 111 )
Therefore
50 56 ≡ 50 32 × 50 16 × 50 8 ≡ 16 ( m o d 111 ) 50^{56} \equiv 50^{32} \times 50^{16} \times 50^8 \equiv 16 \pmod{111} 5 0 56 ≡ 5 0 32 × 5 0 16 × 5 0 8 ≡ 16 ( mod 111 )
Thus
( 50 56 + 34 ) 28 ≡ 50 28 ( m o d 111 ) (50^{56} + 34)^{28} \equiv 50^{28} \pmod{111} ( 5 0 56 + 34 ) 28 ≡ 5 0 28 ( mod 111 )
And
50 28 ≡ 50 16 × 50 8 × 50 4 ≡ 70 ( m o d 111 ) 50^{28} \equiv 50^{16} \times 50^8 \times 50^4 \equiv 70 \pmod{111} 5 0 28 ≡ 5 0 16 × 5 0 8 × 5 0 4 ≡ 70 ( mod 111 )
In summary, the remainder is 70.
(1) Find the last two digits of 3 400 3^{400} 3 400 ; (2) Find the last two digits of 9 9 9 9^{9^9} 9 9 9 .
Solution:
(1) ϕ ( 100 ) = ϕ ( 2 2 × 5 2 ) = ϕ ( 2 2 ) ϕ ( 5 2 ) = ( 4 − 2 ) × ( 25 − 5 ) = 40 \phi(100) = \phi(2^2 \times 5^2) = \phi(2^2) \phi(5^2) = (4-2) \times (25-5) = 40 ϕ ( 100 ) = ϕ ( 2 2 × 5 2 ) = ϕ ( 2 2 ) ϕ ( 5 2 ) = ( 4 − 2 ) × ( 25 − 5 ) = 40
From Euler's Theorem we know
3 ϕ ( 100 ) = 3 40 ≡ 1 ( m o d 100 ) 3^{\phi(100)} = 3^{40} \equiv 1 \pmod{100} 3 ϕ ( 100 ) = 3 40 ≡ 1 ( mod 100 )
Thus
3 400 ≡ ( 3 40 ) 10 ≡ 1 ( m o d 100 ) 3^{400} \equiv (3^{40})^{10} \equiv 1 \pmod{100} 3 400 ≡ ( 3 40 ) 10 ≡ 1 ( mod 100 )
So its last two digits are 01.
(2) We have
9 9 ≡ 9 2 × 4 + 1 ≡ ( 9 2 ) 4 × 9 ≡ ( 1 ) 4 × 9 ≡ 9 ( m o d 40 ) 9^9 \equiv 9^{2 \times 4+1} \equiv (9^2)^4 \times 9 \equiv (1)^4 \times 9 \equiv 9 \pmod{40} 9 9 ≡ 9 2 × 4 + 1 ≡ ( 9 2 ) 4 × 9 ≡ ( 1 ) 4 × 9 ≡ 9 ( mod 40 )
From Euler's Theorem we know
9 ϕ ( 100 ) = 9 40 ≡ 1 ( m o d 100 ) 9^{\phi(100)} = 9^{40} \equiv 1 \pmod{100} 9 ϕ ( 100 ) = 9 40 ≡ 1 ( mod 100 )
Therefore
9 9 9 ≡ 9 9 ( m o d 100 ) 9^{9^9} \equiv 9^9 \pmod{100} 9 9 9 ≡ 9 9 ( mod 100 )
Perform Euclidean algorithm on 9, 100, we have
9 − 1 ≡ 89 ( m o d 100 ) 9^{-1} \equiv 89 \pmod{100} 9 − 1 ≡ 89 ( mod 100 )
And
9 9 × 9 = 9 10 ≡ 1 ( m o d 100 ) 9^9 \times 9 = 9^{10} \equiv 1 \pmod{100} 9 9 × 9 = 9 10 ≡ 1 ( mod 100 )
So
9 9 ≡ 9 − 1 ≡ 89 ( m o d 100 ) 9^9 \equiv 9^{-1} \equiv 89 \pmod{100} 9 9 ≡ 9 − 1 ≡ 89 ( mod 100 )
In summary, its last two digits are 89.
For what value of a a a does x 3 ≡ a ( m o d 9 ) x^3 \equiv a(\bmod 9) x 3 ≡ a ( mod 9 ) have a solution.
Solution: Traverse Z / 9 Z , \mathbb{Z} / 9 \mathbb{Z}, Z /9 Z , the equation has a solution if and only if a ≡ 0 , 1 , 8 ( m o d 9 ) a \equiv 0, 1, 8 \pmod{9} a ≡ 0 , 1 , 8 ( mod 9 ) .
Determine whether the following congruence equations have solutions, and if so, find their solutions:
20 x ≡ 4 ( m o d 30 ) 20 x \equiv 4(\bmod 30) 20 x ≡ 4 ( mod 30 ) ;15 x ≡ 25 ( m o d 35 ) 15 x \equiv 25(\bmod 35) 15 x ≡ 25 ( mod 35 ) ;15 x ≡ 0 ( m o d 35 ) 15 x \equiv 0(\bmod 35) 15 x ≡ 0 ( mod 35 ) .Solution:
The linear congruence equation a x ≡ b ( m o d m ) ax \equiv b \pmod m a x ≡ b ( mod m ) has a solution if and only if gcd ( a , m ) ∣ b \gcd(a, m) \mid b g cd( a , m ) ∣ b . If there is a solution, there are exactly gcd ( a , m ) \gcd(a, m) g cd( a , m ) incongruent solutions modulo m m m .
20 x ≡ 4 ( m o d 30 ) 20 x \equiv 4 \pmod{30} 20 x ≡ 4 ( mod 30 ) .Calculate gcd ( 20 , 30 ) = 10 \gcd(20, 30) = 10 g cd( 20 , 30 ) = 10 .
Because 10 ∤ 4 10 \nmid 4 10 ∤ 4 , the congruence equation has no solution.
15 x ≡ 25 ( m o d 35 ) 15 x \equiv 25 \pmod{35} 15 x ≡ 25 ( mod 35 ) .Calculate gcd ( 15 , 35 ) = 5 \gcd (15, 35) = 5 g cd( 15 , 35 ) = 5 .
Because 5 ∣ 25 5 \mid 25 5 ∣ 25 , the congruence equation has a solution, and there are exactly 5 incongruent solutions modulo 35.
The original equation is equivalent to 15 x = 25 + 35 k 15 x = 25 + 35 k 15 x = 25 + 35 k for some integer k k k .
Divide both sides by gcd ( 15 , 35 ) = 5 \gcd (15, 35)=5 g cd( 15 , 35 ) = 5 :
3 x ≡ 5 ( m o d 7 ) 3 x \equiv 5 \pmod{7} 3 x ≡ 5 ( mod 7 )
To solve this equation, we need to find the inverse of 3 modulo 7.
Observation shows 3 × 5 = 15 ≡ 1 ( m o d 7 ) 3 \times 5 = 15 \equiv 1 \pmod 7 3 × 5 = 15 ≡ 1 ( mod 7 ) . So the inverse of 3 is 5.
Multiply both sides of the above congruence by 5:
5 ⋅ ( 3 x ) ≡ 5 ⋅ 5 ( m o d 7 ) 5 \cdot (3 x) \equiv 5 \cdot 5 \pmod 7 5 ⋅ ( 3 x ) ≡ 5 ⋅ 5 ( mod 7 )
15 x ≡ 25 ( m o d 7 ) 15 x \equiv 25 \pmod 7 15 x ≡ 25 ( mod 7 )
x ≡ 4 ( m o d 7 ) x \equiv 4 \pmod 7 x ≡ 4 ( mod 7 )
So the form of the solution is x = 4 + 7 t x = 4 + 7 t x = 4 + 7 t , where t t t is an integer.
These solutions modulo 35 are: When t = 0 t=0 t = 0 , x = 4 x = 4 x = 4 . When t = 1 t=1 t = 1 , x = 4 + 7 = 11 x = 4 + 7 = 11 x = 4 + 7 = 11 . When t = 2 t=2 t = 2 , x = 4 + 14 = 18 x = 4 + 14 = 18 x = 4 + 14 = 18 . When t = 3 t=3 t = 3 , x = 4 + 21 = 25 x = 4 + 21 = 25 x = 4 + 21 = 25 . When t = 4 t=4 t = 4 , x = 4 + 28 = 32 x = 4 + 28 = 32 x = 4 + 28 = 32 . When t = 5 t=5 t = 5 , x = 4 + 35 = 39 ≡ 4 ( m o d 35 ) x = 4 + 35 = 39 \equiv 4 \pmod{35} x = 4 + 35 = 39 ≡ 4 ( mod 35 ) , start repeating.
Therefore, the solutions are x ≡ 4 , 11 , 18 , 25 , 32 ( m o d 35 ) x \equiv 4, 11, 18, 25, 32 \pmod{35} x ≡ 4 , 11 , 18 , 25 , 32 ( mod 35 ) .
15 x ≡ 0 ( m o d 35 ) 15 x \equiv 0 \pmod{35} 15 x ≡ 0 ( mod 35 ) .Calculate gcd ( 15 , 35 ) = 5 \gcd (15, 35) = 5 g cd( 15 , 35 ) = 5 .
Because 5 ∣ 0 5 \mid 0 5 ∣ 0 , the congruence equation has a solution, and there are exactly 5 incongruent solutions modulo 35.
The original equation is equivalent to 15 x = 35 k 15 x = 35 k 15 x = 35 k for some integer k k k .
Divide both sides by gcd ( 15 , 35 ) = 5 \gcd (15, 35)=5 g cd( 15 , 35 ) = 5 :
3 x ≡ 0 ( m o d 7 ) 3 x \equiv 0 \pmod{7} 3 x ≡ 0 ( mod 7 )
Because gcd ( 3 , 7 ) = 1 \gcd (3, 7) = 1 g cd( 3 , 7 ) = 1 , we can cancel 3, getting:
x ≡ 0 ( m o d 7 ) x \equiv 0 \pmod 7 x ≡ 0 ( mod 7 )
So the form of the solution is x = 7 t x = 7 t x = 7 t , where t t t is an integer.
These solutions modulo 35 are: When t = 0 t=0 t = 0 , x = 0 x = 0 x = 0 . When t = 1 t=1 t = 1 , x = 7 x = 7 x = 7 . When t = 2 t=2 t = 2 , x = 14 x = 14 x = 14 . When t = 3 t=3 t = 3 , x = 21 x = 21 x = 21 . When t = 4 t=4 t = 4 , x = 28 x = 28 x = 28 . When t = 5 t=5 t = 5 , x = 35 ≡ 0 ( m o d 35 ) x = 35 \equiv 0 \pmod{35} x = 35 ≡ 0 ( mod 35 ) , start repeating.
Therefore, the solutions are x ≡ 0 , 7 , 14 , 21 , 28 ( m o d 35 ) x \equiv 0, 7, 14, 21, 28 \pmod{35} x ≡ 0 , 7 , 14 , 21 , 28 ( mod 35 ) .
Solve the system of linear congruence equations in two variables
{ x + 4 y − 29 ≡ 0 ( m o d 143 ) 2 x − 9 y + 84 ≡ 0 ( m o d 143 ) \left\{\begin{aligned} x+4 y-29 & \equiv 0 (\bmod 143) \\ 2 x-9 y+84 & \equiv 0 (\bmod 143) \end{aligned}\right. { x + 4 y − 29 2 x − 9 y + 84 ≡ 0 ( mod 143 ) ≡ 0 ( mod 143 )
Solution:
Write the system of equations in standard form:
{ x + 4 y ≡ 29 ( m o d 143 ) ( 1 ) 2 x − 9 y ≡ − 84 ( m o d 143 ) ( 2 ) \left\{\begin{aligned} x+4 y & \equiv 29 \pmod{143} \quad &(1) \\ 2 x-9 y & \equiv -84 \pmod{143} \quad &(2) \end{aligned}\right. { x + 4 y 2 x − 9 y ≡ 29 ( mod 143 ) ≡ − 84 ( mod 143 ) ( 1 ) ( 2 )
Note that 143 = 11 × 13 143 = 11 \times 13 143 = 11 × 13 .
We can use the elimination method. Multiply equation (1) by 2:
2 x + 8 y ≡ 58 ( m o d 143 ) ( 3 ) 2 x + 8 y \equiv 58 \pmod{143} \quad (3) 2 x + 8 y ≡ 58 ( mod 143 ) ( 3 )
Subtract equation (2) from equation (3):
( 2 x + 8 y ) − ( 2 x − 9 y ) ≡ 58 − ( − 84 ) ( m o d 143 ) (2 x + 8 y) - (2 x - 9 y) \equiv 58 - (-84) \pmod{143} ( 2 x + 8 y ) − ( 2 x − 9 y ) ≡ 58 − ( − 84 ) ( mod 143 )
17 y ≡ 142 ( m o d 143 ) 17 y \equiv 142 \pmod{143} 17 y ≡ 142 ( mod 143 )
Because 142 ≡ − 1 ( m o d 143 ) 142 \equiv -1 \pmod{143} 142 ≡ − 1 ( mod 143 ) , so
17 y ≡ − 1 ( m o d 143 ) 17 y \equiv -1 \pmod{143} 17 y ≡ − 1 ( mod 143 )
We need to solve this linear congruence equation for y y y . First calculate gcd ( 17 , 143 ) \gcd (17, 143) g cd( 17 , 143 ) .
Because 143 = 11 × 13 143 = 11 \times 13 143 = 11 × 13 , 17 is a prime number, and 17 ≠ 11 , 17 ≠ 13 17 \ne 11, 17 \ne 13 17 = 11 , 17 = 13 , so gcd ( 17 , 143 ) = 1 \gcd (17, 143) = 1 g cd( 17 , 143 ) = 1 .
This guarantees that the equation has a unique solution. We need to find the inverse of 17 modulo 143.
Use the extended Euclidean algorithm:
143 = 8 × 17 + 7 17 = 2 × 7 + 3 7 = 2 × 3 + 1 \begin{align} 143 &= 8 \times 17 + 7 \\ 17 &= 2 \times 7 + 3 \\ 7 &= 2 \times 3 + 1 \end{align} 143 17 7 = 8 × 17 + 7 = 2 × 7 + 3 = 2 × 3 + 1
Now substitute back:
1 = 7 − 2 × 3 = 7 − 2 × ( 17 − 2 × 7 ) = 7 − 2 × 17 + 4 × 7 = 5 × 7 − 2 × 17 = 5 × ( 143 − 8 × 17 ) − 2 × 17 = 5 × 143 − 40 × 17 − 2 × 17 = 5 × 143 − 42 × 17 \begin{align} 1 &= 7 - 2 \times 3 \\ &= 7 - 2 \times (17 - 2 \times 7) \\ &= 7 - 2 \times 17 + 4 \times 7 \\ &= 5 \times 7 - 2 \times 17 \\ &= 5 \times (143 - 8 \times 17) - 2 \times 17 \\ &= 5 \times 143 - 40 \times 17 - 2 \times 17 \\ &= 5 \times 143 - 42 \times 17 \end{align} 1 = 7 − 2 × 3 = 7 − 2 × ( 17 − 2 × 7 ) = 7 − 2 × 17 + 4 × 7 = 5 × 7 − 2 × 17 = 5 × ( 143 − 8 × 17 ) − 2 × 17 = 5 × 143 − 40 × 17 − 2 × 17 = 5 × 143 − 42 × 17
From 5 × 143 − 42 × 17 = 1 5 \times 143 - 42 \times 17 = 1 5 × 143 − 42 × 17 = 1 , we get − 42 × 17 ≡ 1 ( m o d 143 ) -42 \times 17 \equiv 1 \pmod{143} − 42 × 17 ≡ 1 ( mod 143 ) .
So the inverse of 17 modulo 143 is − 42 ≡ − 42 + 143 = 101 ( m o d 143 ) -42 \equiv -42 + 143 = 101 \pmod{143} − 42 ≡ − 42 + 143 = 101 ( mod 143 ) .
Multiply both sides of 17 y ≡ − 1 ( m o d 143 ) 17 y \equiv -1 \pmod{143} 17 y ≡ − 1 ( mod 143 ) by 101:
101 ⋅ ( 17 y ) ≡ 101 ⋅ ( − 1 ) ( m o d 143 ) 101 \cdot (17 y) \equiv 101 \cdot (-1) \pmod{143} 101 ⋅ ( 17 y ) ≡ 101 ⋅ ( − 1 ) ( mod 143 )
y ≡ − 101 ( m o d 143 ) y \equiv -101 \pmod{143} y ≡ − 101 ( mod 143 )
y ≡ − 101 + 143 ≡ 42 ( m o d 143 ) y \equiv -101 + 143 \equiv 42 \pmod{143} y ≡ − 101 + 143 ≡ 42 ( mod 143 )
Substitute y = 42 y=42 y = 42 into equation (1):
x + 4 ( 42 ) ≡ 29 ( m o d 143 ) x + 4 (42) \equiv 29 \pmod{143} x + 4 ( 42 ) ≡ 29 ( mod 143 )
x + 168 ≡ 29 ( m o d 143 ) x + 168 \equiv 29 \pmod{143} x + 168 ≡ 29 ( mod 143 )
Because 168 = 143 + 25 ≡ 25 ( m o d 143 ) 168 = 143 + 25 \equiv 25 \pmod{143} 168 = 143 + 25 ≡ 25 ( mod 143 ) , so
x + 25 ≡ 29 ( m o d 143 ) x + 25 \equiv 29 \pmod{143} x + 25 ≡ 29 ( mod 143 )
x ≡ 29 − 25 ( m o d 143 ) x \equiv 29 - 25 \pmod{143} x ≡ 29 − 25 ( mod 143 )
x ≡ 4 ( m o d 143 ) x \equiv 4 \pmod{143} x ≡ 4 ( mod 143 )
Therefore, the solution of the system of equations is x ≡ 4 ( m o d 143 ) x \equiv 4 \pmod{143} x ≡ 4 ( mod 143 ) , y ≡ 42 ( m o d 143 ) y \equiv 42 \pmod{143} y ≡ 42 ( mod 143 ) .
Determine whether the following systems of congruence equations have solutions, and if so, find their solutions:
x ≡ 1 ( m o d 4 ) , x ≡ 0 ( m o d 3 ) , x ≡ 5 ( m o d 7 ) x \equiv 1 (\bmod 4), \quad x \equiv 0 (\bmod 3), \quad x \equiv 5 (\bmod 7) x ≡ 1 ( mod 4 ) , x ≡ 0 ( mod 3 ) , x ≡ 5 ( mod 7 ) ;x ≡ 2 ( m o d 4 ) , x ≡ 7 ( m o d 10 ) , x ≡ 1 ( m o d 3 ) x \equiv 2 (\bmod 4), \quad x \equiv 7 (\bmod 10), \quad x \equiv 1 (\bmod 3) x ≡ 2 ( mod 4 ) , x ≡ 7 ( mod 10 ) , x ≡ 1 ( mod 3 ) ;x ≡ 2 ( m o d 3 ) , x ≡ 3 ( m o d 5 ) , x ≡ 5 ( m o d 2 ) x \equiv 2 (\bmod 3), \quad x \equiv 3 (\bmod 5), \quad x \equiv 5 (\bmod 2) x ≡ 2 ( mod 3 ) , x ≡ 3 ( mod 5 ) , x ≡ 5 ( mod 2 ) ;x ≡ 3 ( m o d 8 ) , x ≡ 11 ( m o d 20 ) , x ≡ 1 ( m o d 15 ) x \equiv 3 (\bmod 8), \quad x \equiv 11 (\bmod 20), \quad x \equiv 1 (\bmod 15) x ≡ 3 ( mod 8 ) , x ≡ 11 ( mod 20 ) , x ≡ 1 ( mod 15 ) .Solution:
Use the Chinese Remainder Theorem (CRT). If the moduli are not coprime, check compatibility first.
x ≡ 1 ( m o d 4 ) x \equiv 1 \pmod 4 x ≡ 1 ( mod 4 ) , x ≡ 0 ( m o d 3 ) x \equiv 0 \pmod 3 x ≡ 0 ( mod 3 ) , x ≡ 5 ( m o d 7 ) x \equiv 5 \pmod 7 x ≡ 5 ( mod 7 ) .Moduli m 1 = 4 , m 2 = 3 , m 3 = 7 m_1=4, m_2=3, m_3=7 m 1 = 4 , m 2 = 3 , m 3 = 7 are pairwise coprime. So there is a unique solution modulo M = 4 × 3 × 7 = 84 M = 4 \times 3 \times 7 = 84 M = 4 × 3 × 7 = 84 .
M 1 = M / m 1 = 84 / 4 = 21 M_1 = M/m_1 = 84/4 = 21 M 1 = M / m 1 = 84/4 = 21 . Solve M 1 y 1 ≡ 1 ( m o d m 1 ) M_1 y_1 \equiv 1 \pmod{m_1} M 1 y 1 ≡ 1 ( mod m 1 ) , i.e., 21 y 1 ≡ 1 ( m o d 4 ) ⟹ y 1 ≡ 1 ( m o d 4 ) 21 y_1 \equiv 1 \pmod 4 \implies y_1 \equiv 1 \pmod 4 21 y 1 ≡ 1 ( mod 4 ) ⟹ y 1 ≡ 1 ( mod 4 ) . Take y 1 = 1 y_1=1 y 1 = 1 .
M 2 = M / m 2 = 84 / 3 = 28 M_2 = M/m_2 = 84/3 = 28 M 2 = M / m 2 = 84/3 = 28 . Solve M 2 y 2 ≡ 1 ( m o d m 2 ) M_2 y_2 \equiv 1 \pmod{m_2} M 2 y 2 ≡ 1 ( mod m 2 ) , i.e., 28 y 2 ≡ 1 ( m o d 3 ) ⟹ y 2 ≡ 1 ( m o d 3 ) 28 y_2 \equiv 1 \pmod 3 \implies y_2 \equiv 1 \pmod 3 28 y 2 ≡ 1 ( mod 3 ) ⟹ y 2 ≡ 1 ( mod 3 ) . Take y 2 = 1 y_2=1 y 2 = 1 .
M 3 = M / m 3 = 84 / 7 = 12 M_3 = M/m_3 = 84/7 = 12 M 3 = M / m 3 = 84/7 = 12 . Solve M 3 y 3 ≡ 1 ( m o d m 3 ) M_3 y_3 \equiv 1 \pmod{m_3} M 3 y 3 ≡ 1 ( mod m 3 ) , i.e., 12 y 3 ≡ 1 ( m o d 7 ) ⟹ 5 y 3 ≡ 1 ( m o d 7 ) 12 y_3 \equiv 1 \pmod 7 \implies 5 y_3 \equiv 1 \pmod 7 12 y 3 ≡ 1 ( mod 7 ) ⟹ 5 y 3 ≡ 1 ( mod 7 ) . Because 5 × 3 = 15 ≡ 1 ( m o d 7 ) 5 \times 3 = 15 \equiv 1 \pmod 7 5 × 3 = 15 ≡ 1 ( mod 7 ) , take y 3 = 3 y_3=3 y 3 = 3 .
According to CRT, the solution is x = a 1 M 1 y 1 + a 2 M 2 y 2 + a 3 M 3 y 3 ( m o d M ) x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 \pmod M x = a 1 M 1 y 1 + a 2 M 2 y 2 + a 3 M 3 y 3 ( mod M ) .
x ≡ 1 ⋅ 21 ⋅ 1 + 0 ⋅ 28 ⋅ 1 + 5 ⋅ 12 ⋅ 3 ( m o d 84 ) x \equiv 1 \cdot 21 \cdot 1 + 0 \cdot 28 \cdot 1 + 5 \cdot 12 \cdot 3 \pmod{84} x ≡ 1 ⋅ 21 ⋅ 1 + 0 ⋅ 28 ⋅ 1 + 5 ⋅ 12 ⋅ 3 ( mod 84 )
x ≡ 21 + 0 + 180 ( m o d 84 ) x \equiv 21 + 0 + 180 \pmod{84} x ≡ 21 + 0 + 180 ( mod 84 )
x ≡ 201 ( m o d 84 ) x \equiv 201 \pmod{84} x ≡ 201 ( mod 84 )
Because 201 = 2 × 84 + 33 201 = 2 \times 84 + 33 201 = 2 × 84 + 33 , so x ≡ 33 ( m o d 84 ) x \equiv 33 \pmod{84} x ≡ 33 ( mod 84 ) .
x ≡ 2 ( m o d 4 ) x \equiv 2 \pmod 4 x ≡ 2 ( mod 4 ) , x ≡ 7 ( m o d 10 ) x \equiv 7 \pmod{10} x ≡ 7 ( mod 10 ) , x ≡ 1 ( m o d 3 ) x \equiv 1 \pmod 3 x ≡ 1 ( mod 3 ) .Moduli 4 and 10 are not coprime, gcd ( 4 , 10 ) = 2 \gcd (4, 10) = 2 g cd( 4 , 10 ) = 2 . Need to check compatibility.
x ≡ 2 ( m o d 4 ) ⟹ x x \equiv 2 \pmod 4 \implies x x ≡ 2 ( mod 4 ) ⟹ x is even. x ≡ 7 ( m o d 10 ) x \equiv 7 \pmod{10} x ≡ 7 ( mod 10 ) . Consider modulo 2: x ≡ 7 ≡ 1 ( m o d 2 ) ⟹ x x \equiv 7 \equiv 1 \pmod 2 \implies x x ≡ 7 ≡ 1 ( mod 2 ) ⟹ x is odd.
A number cannot be both odd and even. These two conditions contradict.
Therefore, the system of congruence equations has no solution.
x ≡ 2 ( m o d 3 ) x \equiv 2 \pmod 3 x ≡ 2 ( mod 3 ) , x ≡ 3 ( m o d 5 ) x \equiv 3 \pmod 5 x ≡ 3 ( mod 5 ) , x ≡ 5 ( m o d 2 ) x \equiv 5 \pmod 2 x ≡ 5 ( mod 2 ) .The last congruence can be simplified to x ≡ 1 ( m o d 2 ) x \equiv 1 \pmod 2 x ≡ 1 ( mod 2 ) .
The system is x ≡ 2 ( m o d 3 ) x \equiv 2 \pmod 3 x ≡ 2 ( mod 3 ) , x ≡ 3 ( m o d 5 ) x \equiv 3 \pmod 5 x ≡ 3 ( mod 5 ) , x ≡ 1 ( m o d 2 ) x \equiv 1 \pmod 2 x ≡ 1 ( mod 2 ) .
Moduli m 1 = 3 , m 2 = 5 , m 3 = 2 m_1=3, m_2=5, m_3=2 m 1 = 3 , m 2 = 5 , m 3 = 2 are pairwise coprime. So there is a unique solution modulo M = 3 × 5 × 2 = 30 M = 3 \times 5 \times 2 = 30 M = 3 × 5 × 2 = 30 .
M 1 = M / m 1 = 30 / 3 = 10 M_1 = M/m_1 = 30/3 = 10 M 1 = M / m 1 = 30/3 = 10 . Solve 10 y 1 ≡ 1 ( m o d 3 ) ⟹ y 1 ≡ 1 ( m o d 3 ) 10 y_1 \equiv 1 \pmod 3 \implies y_1 \equiv 1 \pmod 3 10 y 1 ≡ 1 ( mod 3 ) ⟹ y 1 ≡ 1 ( mod 3 ) . Take y 1 = 1 y_1=1 y 1 = 1 .
M 2 = M / m 2 = 30 / 5 = 6 M_2 = M/m_2 = 30/5 = 6 M 2 = M / m 2 = 30/5 = 6 . Solve 6 y 2 ≡ 1 ( m o d 5 ) ⟹ y 2 ≡ 1 ( m o d 5 ) 6 y_2 \equiv 1 \pmod 5 \implies y_2 \equiv 1 \pmod 5 6 y 2 ≡ 1 ( mod 5 ) ⟹ y 2 ≡ 1 ( mod 5 ) . Take y 2 = 1 y_2=1 y 2 = 1 .
M 3 = M / m 3 = 30 / 2 = 15 M_3 = M/m_3 = 30/2 = 15 M 3 = M / m 3 = 30/2 = 15 . Solve 15 y 3 ≡ 1 ( m o d 2 ) ⟹ y 3 ≡ 1 ( m o d 2 ) 15 y_3 \equiv 1 \pmod 2 \implies y_3 \equiv 1 \pmod 2 15 y 3 ≡ 1 ( mod 2 ) ⟹ y 3 ≡ 1 ( mod 2 ) . Take y 3 = 1 y_3=1 y 3 = 1 .
The solution is x = a 1 M 1 y 1 + a 2 M 2 y 2 + a 3 M 3 y 3 ( m o d M ) x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 \pmod M x = a 1 M 1 y 1 + a 2 M 2 y 2 + a 3 M 3 y 3 ( mod M ) .
x ≡ 2 ⋅ 10 ⋅ 1 + 3 ⋅ 6 ⋅ 1 + 1 ⋅ 15 ⋅ 1 ( m o d 30 ) x \equiv 2 \cdot 10 \cdot 1 + 3 \cdot 6 \cdot 1 + 1 \cdot 15 \cdot 1 \pmod{30} x ≡ 2 ⋅ 10 ⋅ 1 + 3 ⋅ 6 ⋅ 1 + 1 ⋅ 15 ⋅ 1 ( mod 30 )
x ≡ 20 + 18 + 15 ( m o d 30 ) x \equiv 20 + 18 + 15 \pmod{30} x ≡ 20 + 18 + 15 ( mod 30 )
x ≡ 53 ( m o d 30 ) x \equiv 53 \pmod{30} x ≡ 53 ( mod 30 )
Because 53 = 1 × 30 + 23 53 = 1 \times 30 + 23 53 = 1 × 30 + 23 , so x ≡ 23 ( m o d 30 ) x \equiv 23 \pmod{30} x ≡ 23 ( mod 30 ) .
x ≡ 3 ( m o d 8 ) x \equiv 3 \pmod 8 x ≡ 3 ( mod 8 ) , x ≡ 11 ( m o d 20 ) x \equiv 11 \pmod{20} x ≡ 11 ( mod 20 ) , x ≡ 1 ( m o d 15 ) x \equiv 1 \pmod{15} x ≡ 1 ( mod 15 ) .Moduli 8, 20, 15 are not pairwise coprime. gcd ( 8 , 20 ) = 4 \gcd (8, 20)=4 g cd( 8 , 20 ) = 4 , gcd ( 8 , 15 ) = 1 \gcd (8, 15)=1 g cd( 8 , 15 ) = 1 , gcd ( 20 , 15 ) = 5 \gcd (20, 15)=5 g cd( 20 , 15 ) = 5 .
Need to check compatibility.
Check gcd ( 8 , 20 ) = 4 \gcd (8, 20)=4 g cd( 8 , 20 ) = 4 from x ≡ 3 ( m o d 8 ) x \equiv 3 \pmod 8 x ≡ 3 ( mod 8 ) and x ≡ 11 ( m o d 20 ) x \equiv 11 \pmod{20} x ≡ 11 ( mod 20 ) . x ≡ 3 ( m o d 8 ) ⟹ x ≡ 3 ( m o d 4 ) x \equiv 3 \pmod 8 \implies x \equiv 3 \pmod 4 x ≡ 3 ( mod 8 ) ⟹ x ≡ 3 ( mod 4 ) . x ≡ 11 ( m o d 20 ) ⟹ x ≡ 11 ≡ 3 ( m o d 4 ) x \equiv 11 \pmod{20} \implies x \equiv 11 \equiv 3 \pmod 4 x ≡ 11 ( mod 20 ) ⟹ x ≡ 11 ≡ 3 ( mod 4 ) . These two conditions are compatible.
Check gcd ( 20 , 15 ) = 5 \gcd (20, 15)=5 g cd( 20 , 15 ) = 5 from x ≡ 11 ( m o d 20 ) x \equiv 11 \pmod{20} x ≡ 11 ( mod 20 ) and x ≡ 1 ( m o d 15 ) x \equiv 1 \pmod{15} x ≡ 1 ( mod 15 ) . x ≡ 11 ( m o d 20 ) ⟹ x ≡ 11 ≡ 1 ( m o d 5 ) x \equiv 11 \pmod{20} \implies x \equiv 11 \equiv 1 \pmod 5 x ≡ 11 ( mod 20 ) ⟹ x ≡ 11 ≡ 1 ( mod 5 ) . x ≡ 1 ( m o d 15 ) ⟹ x ≡ 1 ( m o d 5 ) x \equiv 1 \pmod{15} \implies x \equiv 1 \pmod 5 x ≡ 1 ( mod 15 ) ⟹ x ≡ 1 ( mod 5 ) . These two conditions are compatible.
Check gcd ( 8 , 15 ) = 1 \gcd (8, 15)=1 g cd( 8 , 15 ) = 1 from x ≡ 3 ( m o d 8 ) x \equiv 3 \pmod 8 x ≡ 3 ( mod 8 ) and x ≡ 1 ( m o d 15 ) x \equiv 1 \pmod{15} x ≡ 1 ( mod 15 ) . Automatically compatible.
Because all conditions are compatible, the system of equations has a solution.
We can decompose the original system of equations into moduli of prime powers: x ≡ 3 ( m o d 8 ) x \equiv 3 \pmod 8 x ≡ 3 ( mod 8 ) x ≡ 11 ( m o d 20 ) ⟹ x ≡ 11 ( m o d 4 ) x \equiv 11 \pmod{20} \implies x \equiv 11 \pmod 4 x ≡ 11 ( mod 20 ) ⟹ x ≡ 11 ( mod 4 ) (already included in x ≡ 3 ( m o d 8 ) x \equiv 3 \pmod 8 x ≡ 3 ( mod 8 ) ) and x ≡ 11 ( m o d 5 ) ⟹ x ≡ 1 ( m o d 5 ) x \equiv 11 \pmod 5 \implies x \equiv 1 \pmod 5 x ≡ 11 ( mod 5 ) ⟹ x ≡ 1 ( mod 5 ) . x ≡ 1 ( m o d 15 ) ⟹ x ≡ 1 ( m o d 3 ) x \equiv 1 \pmod{15} \implies x \equiv 1 \pmod 3 x ≡ 1 ( mod 15 ) ⟹ x ≡ 1 ( mod 3 ) and x ≡ 1 ( m o d 5 ) x \equiv 1 \pmod 5 x ≡ 1 ( mod 5 ) (already exists).
The simplified equivalent system of equations is: x ≡ 3 ( m o d 8 ) x \equiv 3 \pmod 8 x ≡ 3 ( mod 8 ) x ≡ 1 ( m o d 3 ) x \equiv 1 \pmod 3 x ≡ 1 ( mod 3 ) x ≡ 1 ( m o d 5 ) x \equiv 1 \pmod 5 x ≡ 1 ( mod 5 )
Moduli m 1 = 8 , m 2 = 3 , m 3 = 5 m_1=8, m_2=3, m_3=5 m 1 = 8 , m 2 = 3 , m 3 = 5 are pairwise coprime. There is a unique solution modulo M = 8 × 3 × 5 = 120 M = 8 \times 3 \times 5 = 120 M = 8 × 3 × 5 = 120 .
M 1 = M / m 1 = 120 / 8 = 15 M_1 = M/m_1 = 120/8 = 15 M 1 = M / m 1 = 120/8 = 15 . Solve 15 y 1 ≡ 1 ( m o d 8 ) ⟹ − y 1 ≡ 1 ( m o d 8 ) ⟹ y 1 ≡ − 1 ≡ 7 ( m o d 8 ) 15 y_1 \equiv 1 \pmod 8 \implies -y_1 \equiv 1 \pmod 8 \implies y_1 \equiv -1 \equiv 7 \pmod 8 15 y 1 ≡ 1 ( mod 8 ) ⟹ − y 1 ≡ 1 ( mod 8 ) ⟹ y 1 ≡ − 1 ≡ 7 ( mod 8 ) . Take y 1 = 7 y_1=7 y 1 = 7 .
M 2 = M / m 2 = 120 / 3 = 40 M_2 = M/m_2 = 120/3 = 40 M 2 = M / m 2 = 120/3 = 40 . Solve 40 y 2 ≡ 1 ( m o d 3 ) ⟹ y 2 ≡ 1 ( m o d 3 ) 40 y_2 \equiv 1 \pmod 3 \implies y_2 \equiv 1 \pmod 3 40 y 2 ≡ 1 ( mod 3 ) ⟹ y 2 ≡ 1 ( mod 3 ) . Take y 2 = 1 y_2=1 y 2 = 1 .
M 3 = M / m 3 = 120 / 5 = 24 M_3 = M/m_3 = 120/5 = 24 M 3 = M / m 3 = 120/5 = 24 . Solve 24 y 3 ≡ 1 ( m o d 5 ) ⟹ 4 y 3 ≡ 1 ( m o d 5 ) ⟹ − y 3 ≡ 1 ( m o d 5 ) ⟹ y 3 ≡ − 1 ≡ 4 ( m o d 5 ) 24 y_3 \equiv 1 \pmod 5 \implies 4 y_3 \equiv 1 \pmod 5 \implies -y_3 \equiv 1 \pmod 5 \implies y_3 \equiv -1 \equiv 4 \pmod 5 24 y 3 ≡ 1 ( mod 5 ) ⟹ 4 y 3 ≡ 1 ( mod 5 ) ⟹ − y 3 ≡ 1 ( mod 5 ) ⟹ y 3 ≡ − 1 ≡ 4 ( mod 5 ) . Take y 3 = 4 y_3=4 y 3 = 4 .
The solution is x = a 1 M 1 y 1 + a 2 M 2 y 2 + a 3 M 3 y 3 ( m o d M ) x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 \pmod M x = a 1 M 1 y 1 + a 2 M 2 y 2 + a 3 M 3 y 3 ( mod M ) .
x ≡ 3 ⋅ 15 ⋅ 7 + 1 ⋅ 40 ⋅ 1 + 1 ⋅ 24 ⋅ 4 ( m o d 120 ) x \equiv 3 \cdot 15 \cdot 7 + 1 \cdot 40 \cdot 1 + 1 \cdot 24 \cdot 4 \pmod{120} x ≡ 3 ⋅ 15 ⋅ 7 + 1 ⋅ 40 ⋅ 1 + 1 ⋅ 24 ⋅ 4 ( mod 120 )
x ≡ 315 + 40 + 96 ( m o d 120 ) x \equiv 315 + 40 + 96 \pmod{120} x ≡ 315 + 40 + 96 ( mod 120 )
x ≡ 451 ( m o d 120 ) x \equiv 451 \pmod{120} x ≡ 451 ( mod 120 )
Because 451 = 3 × 120 + 91 451 = 3 \times 120 + 91 451 = 3 × 120 + 91 , so x ≡ 91 ( m o d 120 ) x \equiv 91 \pmod{120} x ≡ 91 ( mod 120 ) .
Solve the system of congruence equations:
2 x ≡ 3 ( m o d 5 ) , 3 x ≡ 1 ( m o d 7 ) . 2 x \equiv 3 (\bmod 5), \quad 3 x \equiv 1 (\bmod 7). 2 x ≡ 3 ( mod 5 ) , 3 x ≡ 1 ( mod 7 ) .
Solution:
First solve each linear congruence equation separately.
First equation: 2 x ≡ 3 ( m o d 5 ) 2 x \equiv 3 \pmod 5 2 x ≡ 3 ( mod 5 ) .
We need to find the inverse of 2 modulo 5. 2 × 3 = 6 ≡ 1 ( m o d 5 ) 2 \times 3 = 6 \equiv 1 \pmod 5 2 × 3 = 6 ≡ 1 ( mod 5 ) . The inverse is 3.
Multiply both sides of the equation by 3:
3 ⋅ ( 2 x ) ≡ 3 ⋅ 3 ( m o d 5 ) 3 \cdot (2 x) \equiv 3 \cdot 3 \pmod 5 3 ⋅ ( 2 x ) ≡ 3 ⋅ 3 ( mod 5 )
6 x ≡ 9 ( m o d 5 ) 6 x \equiv 9 \pmod 5 6 x ≡ 9 ( mod 5 )
x ≡ 4 ( m o d 5 ) x \equiv 4 \pmod 5 x ≡ 4 ( mod 5 )
Second equation: 3 x ≡ 1 ( m o d 7 ) 3 x \equiv 1 \pmod 7 3 x ≡ 1 ( mod 7 ) .
We need to find the inverse of 3 modulo 7. 3 × 5 = 15 ≡ 1 ( m o d 7 ) 3 \times 5 = 15 \equiv 1 \pmod 7 3 × 5 = 15 ≡ 1 ( mod 7 ) . The inverse is 5.
Multiply both sides of the equation by 5:
5 ⋅ ( 3 x ) ≡ 5 ⋅ 1 ( m o d 7 ) 5 \cdot (3 x) \equiv 5 \cdot 1 \pmod 7 5 ⋅ ( 3 x ) ≡ 5 ⋅ 1 ( mod 7 )
15 x ≡ 5 ( m o d 7 ) 15 x \equiv 5 \pmod 7 15 x ≡ 5 ( mod 7 )
x ≡ 5 ( m o d 7 ) x \equiv 5 \pmod 7 x ≡ 5 ( mod 7 )
Now we need to solve the simultaneous system of equations:
{ x ≡ 4 ( m o d 5 ) x ≡ 5 ( m o d 7 ) \left\{\begin{aligned} x & \equiv 4 \pmod 5 \\ x & \equiv 5 \pmod 7 \end{aligned}\right. { x x ≡ 4 ( mod 5 ) ≡ 5 ( mod 7 )
Moduli m 1 = 5 , m 2 = 7 m_1=5, m_2=7 m 1 = 5 , m 2 = 7 are coprime. There is a unique solution modulo M = 5 × 7 = 35 M = 5 \times 7 = 35 M = 5 × 7 = 35 .
M 1 = M / m 1 = 35 / 5 = 7 M_1 = M/m_1 = 35/5 = 7 M 1 = M / m 1 = 35/5 = 7 . Solve 7 y 1 ≡ 1 ( m o d 5 ) ⟹ 2 y 1 ≡ 1 ( m o d 5 ) 7 y_1 \equiv 1 \pmod 5 \implies 2 y_1 \equiv 1 \pmod 5 7 y 1 ≡ 1 ( mod 5 ) ⟹ 2 y 1 ≡ 1 ( mod 5 ) . The inverse is 3, so y 1 = 3 y_1=3 y 1 = 3 .
M 2 = M / m 2 = 35 / 7 = 5 M_2 = M/m_2 = 35/7 = 5 M 2 = M / m 2 = 35/7 = 5 . Solve 5 y 2 ≡ 1 ( m o d 7 ) 5 y_2 \equiv 1 \pmod 7 5 y 2 ≡ 1 ( mod 7 ) . The inverse is 3 (5 × 3 = 15 ≡ 1 ( m o d 7 ) 5 \times 3 = 15 \equiv 1 \pmod 7 5 × 3 = 15 ≡ 1 ( mod 7 ) ), so y 2 = 3 y_2=3 y 2 = 3 .
According to CRT, the solution is x = a 1 M 1 y 1 + a 2 M 2 y 2 ( m o d M ) x = a_1 M_1 y_1 + a_2 M_2 y_2 \pmod M x = a 1 M 1 y 1 + a 2 M 2 y 2 ( mod M ) .
x ≡ 4 ⋅ 7 ⋅ 3 + 5 ⋅ 5 ⋅ 3 ( m o d 35 ) x \equiv 4 \cdot 7 \cdot 3 + 5 \cdot 5 \cdot 3 \pmod{35} x ≡ 4 ⋅ 7 ⋅ 3 + 5 ⋅ 5 ⋅ 3 ( mod 35 )
x ≡ 84 + 75 ( m o d 35 ) x \equiv 84 + 75 \pmod{35} x ≡ 84 + 75 ( mod 35 )
x ≡ 159 ( m o d 35 ) x \equiv 159 \pmod{35} x ≡ 159 ( mod 35 )
Because 159 = 4 × 35 + 19 159 = 4 \times 35 + 19 159 = 4 × 35 + 19 , so 159 ≡ 19 ( m o d 35 ) 159 \equiv 19 \pmod{35} 159 ≡ 19 ( mod 35 ) .
Therefore, the solution of the system of equations is x ≡ 19 ( m o d 35 ) x \equiv 19 \pmod{35} x ≡ 19 ( mod 35 ) .
Let m 1 , m 2 , ⋯ , m K m_1, m_2, \cdots, m_K m 1 , m 2 , ⋯ , m K be pairwise coprime, then the necessary and sufficient condition for the system of congruence equations a i x ≡ b i ( m o d m i ) , 1 ⩽ i ⩽ K a_i x \equiv b_i\left (\bmod m_i\right), 1 \leqslant i \leqslant K a i x ≡ b i ( mod m i ) , 1 ⩽ i ⩽ K to have a solution is that each congruence equation a i x ≡ b i ( m o d m i ) a_i x \equiv b_i\left (\bmod m_i\right) a i x ≡ b i ( mod m i ) is solvable.
Proof: Necessity is obvious, prove sufficiency below.
Assume a i x ≡ b i ( m o d m i ) , 1 ≤ i ≤ k a_i x \equiv b_i \pmod{m_i}, 1 \leq i \leq k a i x ≡ b i ( mod m i ) , 1 ≤ i ≤ k are solvable, then
( a i , m i ) ∣ b i (a_i, m_i) \mid b_i ( a i , m i ) ∣ b i
Let d i = ( a i , m i ) d_i = (a_i, m_i) d i = ( a i , m i ) , a i ′ = a i d i a_i' = \frac{a_i}{d_i} a i ′ = d i a i , b i ′ = b i d i b_i' = \frac{b_i}{d_i} b i ′ = d i b i , m i ′ = m i d i m_i' = \frac{m_i}{d_i} m i ′ = d i m i .
Then we have
a i x ≡ b i ( m o d m i ) ⇔ a i ′ x ≡ b i ′ ( m o d m i ′ ) a_i x \equiv b_i \pmod{m_i} \Leftrightarrow a_i' x \equiv b_i' \pmod{m_i'} a i x ≡ b i ( mod m i ) ⇔ a i ′ x ≡ b i ′ ( mod m i ′ )
Since ( a i ′ , m i ′ ) = 1 (a_i', m_i') = 1 ( a i ′ , m i ′ ) = 1 , the equation has a unique solution
x ≡ x i , 0 ( m o d m i ′ ) x \equiv x_{i, 0} \pmod{m_i'} x ≡ x i , 0 ( mod m i ′ )
Therefore, the original system of congruence equations is equivalent to
{ x ≡ x 1 , 0 ( m o d m 1 ′ ) x ≡ x 2 , 0 ( m o d m 2 ′ ) ⋯ x ≡ x k , 0 ( m o d m k ′ ) \begin{cases} x \equiv x_{1,0} \pmod{m_1'} \\ x \equiv x_{2,0} \pmod{m_2'} \\ \cdots \\ x \equiv x_{k, 0} \pmod{m_k'} \end{cases} ⎩ ⎨ ⎧ x ≡ x 1 , 0 ( mod m 1 ′ ) x ≡ x 2 , 0 ( mod m 2 ′ ) ⋯ x ≡ x k , 0 ( mod m k ′ )
For i , j ∈ { 1 , 2 , ⋯ , k } ; i ≠ j i, j \in \{1, 2, \cdots, k\}; i \neq j i , j ∈ { 1 , 2 , ⋯ , k } ; i = j , take prime p ∣ ( m i ′ , m j ′ ) p \mid (m_i', m_j') p ∣ ( m i ′ , m j ′ ) , then p ∣ m i p \mid m_i p ∣ m i and p ∣ m j p \mid m_j p ∣ m j , but ( m i , m j ) = 1 (m_i, m_j) = 1 ( m i , m j ) = 1 . So p p p does not exist.
Therefore
( m i ′ , m j ′ ) = 1 , 1 ≤ i ≠ j ≤ k (m_i', m_j') = 1, 1 \leq i \neq j \leq k ( m i ′ , m j ′ ) = 1 , 1 ≤ i = j ≤ k
By the Chinese Remainder Theorem, the system of congruence equations has a solution.
Let ( a , b ) = 1 , C > 0 (a, b)=1, C>0 ( a , b ) = 1 , C > 0 , prove that there must exist an integer x x x such that ( a + b x , C ) = 1 (a+b x, C)=1 ( a + b x , C ) = 1 .
Proof: Perform prime factorization on C C C
C = p 1 e 1 p 2 e 2 ⋯ p k e k C = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} C = p 1 e 1 p 2 e 2 ⋯ p k e k
Construct the following system of congruence equations
x ≡ d i ( m o d p i ) , i = 1 , 2 , ⋯ , k x \equiv d_i \pmod{p_i}, i=1,2,\cdots, k x ≡ d i ( mod p i ) , i = 1 , 2 , ⋯ , k
Where,
d i = { 0 , p i ∤ b − a b − 1 + 1 ( m o d p i ) , p i ∣ b d_i = \begin{cases} 0, & p_i \nmid b \\ -a b^{-1} + 1 \pmod{p_i}, & p_i \mid b \end{cases} d i = { 0 , − a b − 1 + 1 ( mod p i ) , p i ∤ b p i ∣ b
Since p 1 , p 2 , ⋯ , p k p_1, p_2, \cdots, p_k p 1 , p 2 , ⋯ , p k are pairwise coprime, by the Chinese Remainder Theorem, it has a unique solution x 0 x_0 x 0 .
From the construction of the system of equations, we know
a + b x 0 ≢ 0 ( m o d p i ) , i = 1 , 2 , ⋯ , k a + b x_0 \not\equiv 0 \pmod{p_i}, i=1,2,\cdots, k a + b x 0 ≡ 0 ( mod p i ) , i = 1 , 2 , ⋯ , k
Therefore
( a + b x 0 , C ) = 1 (a + b x_0, C) = 1 ( a + b x 0 , C ) = 1
https://zhuanlan.zhihu.com/p/543010816
https://zhuanlan.zhihu.com/p/544792225
https://zhuanlan.zhihu.com/p/545595129
https://zhuanlan.zhihu.com/p/546385318
https://zhuanlan.zhihu.com/p/547333984
https://zhuanlan.zhihu.com/p/548061254